A gcd-sum function over regular integers modulo $n$
Journal of integer sequences, Tome 12 (2009) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a gcd-sum function involving regular integers (mod $n$) and prove results giving its minimal order, maximal order and average order.
Classification : 11A25, 11N37
Keywords: regular integers (mod n), gcd-sum function, unitary divisor, Dirichlet divisor problem, Riemann hypothesis
@article{JIS_2009__12_2_a1,
     author = {T\'oth, L\'aszl\'o},
     title = {A gcd-sum function over regular integers modulo $n$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a1/}
}
TY  - JOUR
AU  - Tóth, László
TI  - A gcd-sum function over regular integers modulo $n$
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a1/
LA  - en
ID  - JIS_2009__12_2_a1
ER  - 
%0 Journal Article
%A Tóth, László
%T A gcd-sum function over regular integers modulo $n$
%J Journal of integer sequences
%D 2009
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a1/
%G en
%F JIS_2009__12_2_a1
Tóth, László. A gcd-sum function over regular integers modulo $n$. Journal of integer sequences, Tome 12 (2009) no. 2. http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a1/