On the number of subsets relatively prime to an integer
Journal of integer sequences, Tome 11 (2008) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Fix a positive integer and a finite set whose elements are in arithmetic progression. We give a formula for the number of nonempty subsets of this set that are coprime to the given integer. A similar formula is given when we restrict our attention to the subsets having the same fixed cardinality. These formulas generalize previous results of El Bachraoui.
Classification : 05A15
Keywords: relatively prime subset, Euler phi function
@article{JIS_2008__11_5_a7,
     author = {Ayad, Mohamed and Kihel, Omar},
     title = {On the number of subsets relatively prime to an integer},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a7/}
}
TY  - JOUR
AU  - Ayad, Mohamed
AU  - Kihel, Omar
TI  - On the number of subsets relatively prime to an integer
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a7/
LA  - en
ID  - JIS_2008__11_5_a7
ER  - 
%0 Journal Article
%A Ayad, Mohamed
%A Kihel, Omar
%T On the number of subsets relatively prime to an integer
%J Journal of integer sequences
%D 2008
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a7/
%G en
%F JIS_2008__11_5_a7
Ayad, Mohamed; Kihel, Omar. On the number of subsets relatively prime to an integer. Journal of integer sequences, Tome 11 (2008) no. 5. http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a7/