On the partitions of a number into arithmetic progressions
Journal of integer sequences, Tome 11 (2008) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The paper investigates the enumeration of the set $AP(n)$ of partitions of a positive integer $n$ in which the nondecreasing sequence of parts form an arithmetic progression. We establish formulas for such partitions, and characterize a class of integers $n$ with the property that the length of every member of $AP(n)$ divides $n$. We prove that the number of such integers is small.
Classification : 11P81, 05A15, 05A17
Keywords: partition, arithmetic progression, divisor function, Diophantine equation
@article{JIS_2008__11_5_a6,
     author = {Munagi, Augustine O. and Shonhiwa, Temba},
     title = {On the partitions of a number into arithmetic progressions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a6/}
}
TY  - JOUR
AU  - Munagi, Augustine O.
AU  - Shonhiwa, Temba
TI  - On the partitions of a number into arithmetic progressions
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a6/
LA  - en
ID  - JIS_2008__11_5_a6
ER  - 
%0 Journal Article
%A Munagi, Augustine O.
%A Shonhiwa, Temba
%T On the partitions of a number into arithmetic progressions
%J Journal of integer sequences
%D 2008
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a6/
%G en
%F JIS_2008__11_5_a6
Munagi, Augustine O.; Shonhiwa, Temba. On the partitions of a number into arithmetic progressions. Journal of integer sequences, Tome 11 (2008) no. 5. http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a6/