Riordan arrays, Sheffer sequences and "orthogonal" polynomials
Journal of integer sequences, Tome 11 (2008) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms $\rho(n,m)={n\choose m}c^mF_{n-m}(m),\ c\neq0,$ and extensions $\rho(x,x-k)=(-1)^kx^{\underline{k+1}}c^{x-k}F_k(x)$, where the $F_k(x)$ are polynomials in $x$, holding for each $\rho(n,m)$ in a Riordan array. Examples $\rho(n,m)={n\choose m}S_k(x)$ are given, in which the $S_k(x)$ are "orthogonal" polynomials currently found in mathematical physics and combinatorial analysis.
Classification : 05A19, 05A15
Keywords: riordan group, convolution polynomials, polynomial extensions, Sheffer sequences, orthogonal polynomials
@article{JIS_2008__11_5_a5,
     author = {Della Riccia, Giacomo},
     title = {Riordan arrays, {Sheffer} sequences and "orthogonal" polynomials},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a5/}
}
TY  - JOUR
AU  - Della Riccia, Giacomo
TI  - Riordan arrays, Sheffer sequences and "orthogonal" polynomials
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a5/
LA  - en
ID  - JIS_2008__11_5_a5
ER  - 
%0 Journal Article
%A Della Riccia, Giacomo
%T Riordan arrays, Sheffer sequences and "orthogonal" polynomials
%J Journal of integer sequences
%D 2008
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a5/
%G en
%F JIS_2008__11_5_a5
Della Riccia, Giacomo. Riordan arrays, Sheffer sequences and "orthogonal" polynomials. Journal of integer sequences, Tome 11 (2008) no. 5. http://geodesic.mathdoc.fr/item/JIS_2008__11_5_a5/