Regularity properties of the Stern enumeration of the rationals
Journal of integer sequences, Tome 11 (2008) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The tern sequence $s(n)$ is defined by $s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n+1) = s(n) + s(n+1)$. Stern showed in 1858 that $gcd(s(n),s(n+1))$ = 1, and that every positive rational number $a/b$ occurs exactly once in the form $s(n)/ s(n+1)$ for some $n \ge 1$. We show that in a strong sense, the average value of these fractions is 3/2. We also show that for $d \ge 2$, the pair $(s(n), s(n+1))$ is uniformly distributed among all feasible pairs of congruence classes modulo $d$. More precise results are presented for $d = 2$ and 3.
Classification : 05A15, 11B37, 11B57, 11B75
Keywords: stern sequence, enumerations of the rationals, stern-brocot array, dijkstra's "fusc" sequence, integer sequences mod m
@article{JIS_2008__11_4_a5,
     author = {Reznick, Bruce},
     title = {Regularity properties of the {Stern} enumeration of the rationals},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a5/}
}
TY  - JOUR
AU  - Reznick, Bruce
TI  - Regularity properties of the Stern enumeration of the rationals
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a5/
LA  - en
ID  - JIS_2008__11_4_a5
ER  - 
%0 Journal Article
%A Reznick, Bruce
%T Regularity properties of the Stern enumeration of the rationals
%J Journal of integer sequences
%D 2008
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a5/
%G en
%F JIS_2008__11_4_a5
Reznick, Bruce. Regularity properties of the Stern enumeration of the rationals. Journal of integer sequences, Tome 11 (2008) no. 4. http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a5/