Enumeration of unigraphical partitions
Journal of integer sequences, Tome 11 (2008) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In the early 1960s, S. L. Hakimi proved necessary and sufficient conditions for a given sequence of positive integers $d_{1}, d_{2}, \dots , d_{n}$ to be the degree sequence of a unique graph (that is, one and only one graph realization exists for such a degree sequence). Our goal in this note is to utilize Hakimi's characterization to prove a closed formula for the function $d_{uni}(2 m)$, the number of "unigraphical partitions" with degree sum $2m$.
Classification : 05A15, 05A17, 05C75, 11P81
Keywords: partition, degree sequence, graph, unigraphical, generating function (Concerned with sequences and )
@article{JIS_2008__11_4_a4,
     author = {Hirschhorn, Michael D. and Sellers, James A.},
     title = {Enumeration of unigraphical partitions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a4/}
}
TY  - JOUR
AU  - Hirschhorn, Michael D.
AU  - Sellers, James A.
TI  - Enumeration of unigraphical partitions
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a4/
LA  - en
ID  - JIS_2008__11_4_a4
ER  - 
%0 Journal Article
%A Hirschhorn, Michael D.
%A Sellers, James A.
%T Enumeration of unigraphical partitions
%J Journal of integer sequences
%D 2008
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a4/
%G en
%F JIS_2008__11_4_a4
Hirschhorn, Michael D.; Sellers, James A. Enumeration of unigraphical partitions. Journal of integer sequences, Tome 11 (2008) no. 4. http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a4/