Inversions of permutations in symmetric, alternating, and dihedral groups
Journal of integer sequences, Tome 11 (2008) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We use two methods to obtain a formula relating the total number of inversions of all permutations and the corresponding order of symmetric, alternating, and dihedral groups. First, we define an equivalence relation on the symmetric group $S_{n}$ and consider each element in each equivalence class as a permutation of a proper subset of ${1,2, \dots , n}$. Second, we look at certain properties of a backward permutation, a permutation obtained by reversing the row images of a given permutation. Lastly, we employ the first method to obtain a recursive formula corresponding to the number of permutations with $k$ inversions.
Classification : 05A10, 20B35
Keywords: inversions, permutations, symmetric groups, alternating groups, dihedral groups
@article{JIS_2008__11_4_a1,
     author = {Indong, Dexter Jane L. and Peralta, Gilbert R.},
     title = {Inversions of permutations in symmetric, alternating, and dihedral groups},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a1/}
}
TY  - JOUR
AU  - Indong, Dexter Jane L.
AU  - Peralta, Gilbert R.
TI  - Inversions of permutations in symmetric, alternating, and dihedral groups
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a1/
LA  - en
ID  - JIS_2008__11_4_a1
ER  - 
%0 Journal Article
%A Indong, Dexter Jane L.
%A Peralta, Gilbert R.
%T Inversions of permutations in symmetric, alternating, and dihedral groups
%J Journal of integer sequences
%D 2008
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a1/
%G en
%F JIS_2008__11_4_a1
Indong, Dexter Jane L.; Peralta, Gilbert R. Inversions of permutations in symmetric, alternating, and dihedral groups. Journal of integer sequences, Tome 11 (2008) no. 4. http://geodesic.mathdoc.fr/item/JIS_2008__11_4_a1/