A combinatorial interpretation for an identity of Barrucand
Journal of integer sequences, Tome 11 (2008) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The binomial coefficient identity, $ \sum_{k=0}^{n}\binom{n}{k}\sum_{j=0}^{k}\binom{k}{j}^{3}= \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2k}{k}$, appeared as Problem 75-4 in Siam Review in 1975. The published solution equated constant terms in a suitable polynomial identity. Here we give a combinatorial interpretation in terms of card deals.
Classification : 05A15
Keywords: combinatorial identity, card deals (Concerned with sequences and )
@article{JIS_2008__11_3_a3,
     author = {Callan, David},
     title = {A combinatorial interpretation for an identity of {Barrucand}},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a3/}
}
TY  - JOUR
AU  - Callan, David
TI  - A combinatorial interpretation for an identity of Barrucand
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a3/
LA  - en
ID  - JIS_2008__11_3_a3
ER  - 
%0 Journal Article
%A Callan, David
%T A combinatorial interpretation for an identity of Barrucand
%J Journal of integer sequences
%D 2008
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a3/
%G en
%F JIS_2008__11_3_a3
Callan, David. A combinatorial interpretation for an identity of Barrucand. Journal of integer sequences, Tome 11 (2008) no. 3. http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a3/