Complementary equations and Wythoff sequences
Journal of integer sequences, Tome 11 (2008) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The lower Wythoff sequence $a = (a(n))$ and upper Wythoff sequence $b = (b(n))$ are solutions of many complementary equations $f(a,b) = 0$. Typically, $f(a,b)$ involves composites such as $a(a(n))$ and $a(b(n))$, and each such sequence is treated as a binary word (e.g., $aa$ and $ab$). Conversely, each word represents a sequence and, as such, is a linear combination of $a, b$, and 1, in which the coefficients of $a$ and $b$ are consecutive Fibonacci numbers. For example, $baba = 3a+5b-6$.
Keywords: complementary equation, complementary sequences, Fibonacci numbers, golden ratio, wythoff array, wythoff sequence
@article{JIS_2008__11_3_a1,
     author = {Kimberling, Clark},
     title = {Complementary equations and {Wythoff} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a1/}
}
TY  - JOUR
AU  - Kimberling, Clark
TI  - Complementary equations and Wythoff sequences
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a1/
LA  - en
ID  - JIS_2008__11_3_a1
ER  - 
%0 Journal Article
%A Kimberling, Clark
%T Complementary equations and Wythoff sequences
%J Journal of integer sequences
%D 2008
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a1/
%G en
%F JIS_2008__11_3_a1
Kimberling, Clark. Complementary equations and Wythoff sequences. Journal of integer sequences, Tome 11 (2008) no. 3. http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a1/