On generalized elite primes
Journal of integer sequences, Tome 11 (2008) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A prime number $p$ is called $b$-elite if only finitely many generalized Fermat numbers $F_{b,n} = b^{2^{n}}+1$ are quadratic residues to $p$. So far, only the case $b = 2$ was subjected to theoretical and experimental researches by several authors. Most of the results obtained for this special case can be generalized for all bases $b > 2$. Moreover, the generalization allows an insight to more general structures in which standard elite primes are embedded. We present selected computational results from which some conjectures are derived.
Classification : 11A15, 11A41
Keywords: elite primes, generalized Fermat numbers
@article{JIS_2008__11_3_a0,
     author = {M\"uller, Tom and Reinhart, Andreas},
     title = {On generalized elite primes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a0/}
}
TY  - JOUR
AU  - Müller, Tom
AU  - Reinhart, Andreas
TI  - On generalized elite primes
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a0/
LA  - en
ID  - JIS_2008__11_3_a0
ER  - 
%0 Journal Article
%A Müller, Tom
%A Reinhart, Andreas
%T On generalized elite primes
%J Journal of integer sequences
%D 2008
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a0/
%G en
%F JIS_2008__11_3_a0
Müller, Tom; Reinhart, Andreas. On generalized elite primes. Journal of integer sequences, Tome 11 (2008) no. 3. http://geodesic.mathdoc.fr/item/JIS_2008__11_3_a0/