A symbolic operator approach to power series transformation-expansion formulas
Journal of integer sequences, Tome 11 (2008) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we discuss a kind of symbolic operator method by making use of the defined Sheffer-type polynomial sequences and their generalizations, which can be used to construct many power series transformation and expansion formulas. The convergence of the expansions are also discussed.
Classification : 41A58, 41A80, 65B10, 05A15, 33C45, 39A70
Keywords: Sheffer-type polynomials, symbolic operator, power series, transformationexpansion, generalized Eulerian fractions, Stirling number of the second kind
@article{JIS_2008__11_2_a4,
     author = {He, Tian-Xiao},
     title = {A symbolic operator approach to power series transformation-expansion formulas},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a4/}
}
TY  - JOUR
AU  - He, Tian-Xiao
TI  - A symbolic operator approach to power series transformation-expansion formulas
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a4/
LA  - en
ID  - JIS_2008__11_2_a4
ER  - 
%0 Journal Article
%A He, Tian-Xiao
%T A symbolic operator approach to power series transformation-expansion formulas
%J Journal of integer sequences
%D 2008
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a4/
%G en
%F JIS_2008__11_2_a4
He, Tian-Xiao. A symbolic operator approach to power series transformation-expansion formulas. Journal of integer sequences, Tome 11 (2008) no. 2. http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a4/