A generalized recurrence for Bell numbers
Journal of integer sequences, Tome 11 (2008) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the two most well-known expressions for Bell numbers, $ \varpi_n = \sum_{k=0}^n \genfrac{\{}{\}}{0pt}{}{n}{k}$ and $ \varpi_{n+1} = \sum_{k=0}^n \binom{n}{k} \varpi_k$, are both special cases of a third expression for the Bell numbers, and we give a combinatorial proof of the latter.
Classification : 11B73
Keywords: Bell number, Stirling number
@article{JIS_2008__11_2_a1,
     author = {Spivey, Michael Z.},
     title = {A generalized recurrence for {Bell} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a1/}
}
TY  - JOUR
AU  - Spivey, Michael Z.
TI  - A generalized recurrence for Bell numbers
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a1/
LA  - en
ID  - JIS_2008__11_2_a1
ER  - 
%0 Journal Article
%A Spivey, Michael Z.
%T A generalized recurrence for Bell numbers
%J Journal of integer sequences
%D 2008
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a1/
%G en
%F JIS_2008__11_2_a1
Spivey, Michael Z. A generalized recurrence for Bell numbers. Journal of integer sequences, Tome 11 (2008) no. 2. http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a1/