A natural prime-generating recurrence
Journal of integer sequences, Tome 11 (2008) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For the sequence defined by $a(n) = a(n-1) + gcd(n,a(n-1))$ with $a(1) = 7$ we prove that $a(n) - a(n-1)$ takes on only 1's and primes, making this recurrence a rare "naturally occurring" generator of primes. Toward a generalization of this result to an arbitrary initial condition, we also study the limiting behavior of $a(n)/n$ and a transience property of the evolution.
Classification : 11A41, 11B37
Keywords: prime-generating recurrence, prime formulas, discrete dynamical systems, greatest common divisor
@article{JIS_2008__11_2_a0,
     author = {Rowland, Eric S.},
     title = {A natural prime-generating recurrence},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a0/}
}
TY  - JOUR
AU  - Rowland, Eric S.
TI  - A natural prime-generating recurrence
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a0/
LA  - en
ID  - JIS_2008__11_2_a0
ER  - 
%0 Journal Article
%A Rowland, Eric S.
%T A natural prime-generating recurrence
%J Journal of integer sequences
%D 2008
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a0/
%G en
%F JIS_2008__11_2_a0
Rowland, Eric S. A natural prime-generating recurrence. Journal of integer sequences, Tome 11 (2008) no. 2. http://geodesic.mathdoc.fr/item/JIS_2008__11_2_a0/