A partition formula for Fibonacci numbers
Journal of integer sequences, Tome 11 (2008) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present a partition formula for the even index Fibonacci numbers. The formula is motivated by the appearance of these Fibonacci numbers in the representation theory of the socalled 3-Kronecker quiver, i.e., the oriented graph with two vertices and three arrows in the same direction.
Classification : 11B39, 16G20
Keywords: Fibonacci numbers, universal cover, 3-regular tree, 3-Kronecker quiver
@article{JIS_2008__11_1_a2,
     author = {Fahr, Philipp and Ringel, Claus Michael},
     title = {A partition formula for {Fibonacci} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a2/}
}
TY  - JOUR
AU  - Fahr, Philipp
AU  - Ringel, Claus Michael
TI  - A partition formula for Fibonacci numbers
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a2/
LA  - en
ID  - JIS_2008__11_1_a2
ER  - 
%0 Journal Article
%A Fahr, Philipp
%A Ringel, Claus Michael
%T A partition formula for Fibonacci numbers
%J Journal of integer sequences
%D 2008
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a2/
%G en
%F JIS_2008__11_1_a2
Fahr, Philipp; Ringel, Claus Michael. A partition formula for Fibonacci numbers. Journal of integer sequences, Tome 11 (2008) no. 1. http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a2/