Primes in classes of the iterated totient function
Journal of integer sequences, Tome 11 (2008) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: As shown by Shapiro, the iterated totient function separates integers into classes having three sections. After summarizing some previous results about the iterated totient function, we prove five theorems about primes $p$ in a class and the factorization of $p-1$. An application of one theorem is the calculation of the smallest number in classes up to 1000.
Classification : 11A25
Keywords: Euler function, iteration, class number
@article{JIS_2008__11_1_a1,
     author = {Noe, Tony D.},
     title = {Primes in classes of the iterated totient function},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a1/}
}
TY  - JOUR
AU  - Noe, Tony D.
TI  - Primes in classes of the iterated totient function
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a1/
LA  - en
ID  - JIS_2008__11_1_a1
ER  - 
%0 Journal Article
%A Noe, Tony D.
%T Primes in classes of the iterated totient function
%J Journal of integer sequences
%D 2008
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a1/
%G en
%F JIS_2008__11_1_a1
Noe, Tony D. Primes in classes of the iterated totient function. Journal of integer sequences, Tome 11 (2008) no. 1. http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a1/