Sets, lists and noncrossing partitions
Journal of integer sequences, Tome 11 (2008) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Partitions of $[n] = {1,2,\dots ,n}$ into sets of lists (A000262) are somewhat less numerous than partitions of $[n]$ into lists of sets (A000670). Here we observe that the former are actually equinumerous with partitions of $[n]$ into lists of $noncrossing$ sets and give a bijective proof. We show that partitions of $[n]$ into sets of noncrossing lists are counted by A088368 and generalize this result to introduce a transform on integer sequences that we dub the "noncrossing partition" transform. We also derive recurrence relations to count partitions of $[n]$ into lists of noncrossing lists.
Keywords: set partitions, lists, noncrossing, cycle lemma
@article{JIS_2008__11_1_a0,
     author = {Callan, David},
     title = {Sets, lists and noncrossing partitions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a0/}
}
TY  - JOUR
AU  - Callan, David
TI  - Sets, lists and noncrossing partitions
JO  - Journal of integer sequences
PY  - 2008
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a0/
LA  - en
ID  - JIS_2008__11_1_a0
ER  - 
%0 Journal Article
%A Callan, David
%T Sets, lists and noncrossing partitions
%J Journal of integer sequences
%D 2008
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a0/
%G en
%F JIS_2008__11_1_a0
Callan, David. Sets, lists and noncrossing partitions. Journal of integer sequences, Tome 11 (2008) no. 1. http://geodesic.mathdoc.fr/item/JIS_2008__11_1_a0/