Enumeration of integral tetrahedra
Journal of integer sequences, Tome 10 (2007) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We determine the number of integral tetrahedra with diameter $d$, up to isomorphism, for all $d \le 1000$, via computer enumeration. We give an algorithm that enumerates the integral tetrahedra with diameter at most $d$ in $O(d^{5})$ time and an algorithm that can check the canonicity of a given integral tetrahedron with at most 6 integer comparisons. For the number of isomorphism classes of integral $4\times 4$ matrices with diameter $d$ fulfilling the triangle inequalities we derive an exact formula.
Classification : 33F05, 05A15
Keywords: implicit enumeration, integral tetrahedra, geometric probability, Euclidean metric, orderly generation, canonicity check
@article{JIS_2007__10_9_a7,
     author = {Kurz, Sascha},
     title = {Enumeration of integral tetrahedra},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a7/}
}
TY  - JOUR
AU  - Kurz, Sascha
TI  - Enumeration of integral tetrahedra
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a7/
LA  - en
ID  - JIS_2007__10_9_a7
ER  - 
%0 Journal Article
%A Kurz, Sascha
%T Enumeration of integral tetrahedra
%J Journal of integer sequences
%D 2007
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a7/
%G en
%F JIS_2007__10_9_a7
Kurz, Sascha. Enumeration of integral tetrahedra. Journal of integer sequences, Tome 10 (2007) no. 9. http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a7/