Permutations defining convex permutominoes
Journal of integer sequences, Tome 10 (2007) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A permutomino of size $n$ is a polyomino determined by particular pairs $(\pi _{1}, \pi _{2})$ of permutations of size $n$, such that $\pi _{1}(i) \ne \pi _{2}(i)$ for $1 \le $ i $\le n$. Here we determine the combinatorial properties and, in particular, the characterization for the pairs of permutations defining convex permutominoes.
Classification : 05A15, 05A05
Keywords: permutominoes, polyominoes
@article{JIS_2007__10_9_a4,
     author = {Bernini, Antonio and Disanto, Filippo and Pinzani, Renzo and Rinaldi, Simone},
     title = {Permutations defining convex permutominoes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a4/}
}
TY  - JOUR
AU  - Bernini, Antonio
AU  - Disanto, Filippo
AU  - Pinzani, Renzo
AU  - Rinaldi, Simone
TI  - Permutations defining convex permutominoes
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a4/
LA  - en
ID  - JIS_2007__10_9_a4
ER  - 
%0 Journal Article
%A Bernini, Antonio
%A Disanto, Filippo
%A Pinzani, Renzo
%A Rinaldi, Simone
%T Permutations defining convex permutominoes
%J Journal of integer sequences
%D 2007
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a4/
%G en
%F JIS_2007__10_9_a4
Bernini, Antonio; Disanto, Filippo; Pinzani, Renzo; Rinaldi, Simone. Permutations defining convex permutominoes. Journal of integer sequences, Tome 10 (2007) no. 9. http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a4/