Abundancy "outlaws" of the form $\frac{(\sigma(N)+t)}{N}$
Journal of integer sequences, Tome 10 (2007) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The abundancy index of a positive integer $n$ is defined to be the rational number $I(n)=\sigma(n)/n$, where $\sigma$ is the sum of divisors function $\sigma(n)=\sum_{d\vert n}d$. An abundancy outlaw is a rational number greater than 1 that fails to be in the image of of the map $I$. In this paper, we consider rational numbers of the form $(\sigma(N)+t)/N$ and prove that under certain conditions such rationals are abundancy outlaws.
Classification : 11A25, 11Y55, 11Y70
Keywords: abundancy index, abundancy outlaw, sum of divisors function, perfect numbers
@article{JIS_2007__10_9_a1,
     author = {Stanton, William G. and Holdener, Judy A.},
     title = {Abundancy "outlaws" of the form $\frac{(\sigma(N)+t)}{N}$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a1/}
}
TY  - JOUR
AU  - Stanton, William G.
AU  - Holdener, Judy A.
TI  - Abundancy "outlaws" of the form $\frac{(\sigma(N)+t)}{N}$
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a1/
LA  - en
ID  - JIS_2007__10_9_a1
ER  - 
%0 Journal Article
%A Stanton, William G.
%A Holdener, Judy A.
%T Abundancy "outlaws" of the form $\frac{(\sigma(N)+t)}{N}$
%J Journal of integer sequences
%D 2007
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a1/
%G en
%F JIS_2007__10_9_a1
Stanton, William G.; Holdener, Judy A. Abundancy "outlaws" of the form $\frac{(\sigma(N)+t)}{N}$. Journal of integer sequences, Tome 10 (2007) no. 9. http://geodesic.mathdoc.fr/item/JIS_2007__10_9_a1/