Minimal $r$-complete partitions
Journal of integer sequences, Tome 10 (2007) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A minimal $r$-complete partition of an integer $m$ is a partition of $m$ with as few parts as possible, such that all the numbers 1,$\dots , rm$ can be written as a sum of parts taken from the partition, each part being used at most $r$ times. This is a generalization of M-partitions (minimal 1-complete partitions). The number of M-partitions of $m$ was recently connected to the binary partition function and two related arithmetic functions. In this paper we study the case $r \geq 2$, and connect the number of minimal $r$-complete partitions to the $(r+1)$-ary partition function and a related arithmetic function.
Classification : 11P81, 05A17
Keywords: complete partitions, M-partitions, (r + 1)-ary partitions
@article{JIS_2007__10_8_a7,
     author = {R{\o}dseth, {\O}ystein J.},
     title = {Minimal $r$-complete partitions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_8_a7/}
}
TY  - JOUR
AU  - Rødseth, Øystein J.
TI  - Minimal $r$-complete partitions
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_8_a7/
LA  - en
ID  - JIS_2007__10_8_a7
ER  - 
%0 Journal Article
%A Rødseth, Øystein J.
%T Minimal $r$-complete partitions
%J Journal of integer sequences
%D 2007
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_8_a7/
%G en
%F JIS_2007__10_8_a7
Rødseth, Øystein J. Minimal $r$-complete partitions. Journal of integer sequences, Tome 10 (2007) no. 8. http://geodesic.mathdoc.fr/item/JIS_2007__10_8_a7/