Asymptotics for Lacunary sums of binomial coefficients and a card problem with ranks
Journal of integer sequences, Tome 10 (2007) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We find asymptotics for lacunary sums of binomial coefficients. As an application we determine the exact and approximate probability that the first card has the uniquely highest rank among the top $l$ cards of a standard card deck.
Classification : 05A10, 05A16, 11B68
Keywords: lacunary sum, asymptotic enumeration, Bernoulli numbers
@article{JIS_2007__10_7_a3,
     author = {Lengyel, Tam\'as},
     title = {Asymptotics for {Lacunary} sums of binomial coefficients and a card problem with ranks},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a3/}
}
TY  - JOUR
AU  - Lengyel, Tamás
TI  - Asymptotics for Lacunary sums of binomial coefficients and a card problem with ranks
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a3/
LA  - en
ID  - JIS_2007__10_7_a3
ER  - 
%0 Journal Article
%A Lengyel, Tamás
%T Asymptotics for Lacunary sums of binomial coefficients and a card problem with ranks
%J Journal of integer sequences
%D 2007
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a3/
%G en
%F JIS_2007__10_7_a3
Lengyel, Tamás. Asymptotics for Lacunary sums of binomial coefficients and a card problem with ranks. Journal of integer sequences, Tome 10 (2007) no. 7. http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a3/