Generalized Schröder numbers and the rotation principle
Journal of integer sequences, Tome 10 (2007) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a point-lattice $ (m+1) \times (n+1) \subseteq \mathbb{N} \times \mathbb{N}$ and $ l \in \mathbb{N}$, we determine the number of royal paths from $ (0,0)$ to $ (m,n)$ with unit steps $ (1,0), (0,1)$ and $ (1,1)$, which never go below the line $ y = lx$, by means of the rotation principle. Compared to the method of "penetrating analysis", this principle has here the advantage of greater clarity and enables us to find meaningful additive decompositions of Schröder numbers. It also enables us to establish a connection to coordination numbers and the crystal ball in the cubic lattice $ \mathbb{Z}^d$. As a by-product we derive a recursion for the number of North-East turns of rectangular lattice paths and construct a WZ-pair involving coordination numbers and Delannoy numbers.
Classification : 05A10, 05A15, 05A19
Keywords: delannoy numbers, schr$\ddot $oder numbers, royal path, King path, point lattice, integer slope, coordination sequence, crystal sphere, generating function, recursion, rotation principle, WZ-pair, NE-turn, up-right corner
@article{JIS_2007__10_7_a1,
     author = {Schr\"oder, Joachim},
     title = {Generalized {Schr\"oder} numbers and the rotation principle},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a1/}
}
TY  - JOUR
AU  - Schröder, Joachim
TI  - Generalized Schröder numbers and the rotation principle
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a1/
LA  - en
ID  - JIS_2007__10_7_a1
ER  - 
%0 Journal Article
%A Schröder, Joachim
%T Generalized Schröder numbers and the rotation principle
%J Journal of integer sequences
%D 2007
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a1/
%G en
%F JIS_2007__10_7_a1
Schröder, Joachim. Generalized Schröder numbers and the rotation principle. Journal of integer sequences, Tome 10 (2007) no. 7. http://geodesic.mathdoc.fr/item/JIS_2007__10_7_a1/