Integer partitions and convexity
Journal of integer sequences, Tome 10 (2007) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $n$ be an integer >=1, and let $p(n,k)$ and $P(n,k)$ count the number of partitions of $n$ into $k$ parts, and the number of partitions of $n$ into parts less than or equal to $k$, respectively. In this paper, we show that these functions are convex. The result includes the actual value of the constant of Bateman and Erdős.
Classification : 11P81
Keywords: integer partition, convexity
@article{JIS_2007__10_6_a5,
     author = {Bouroubi, Sadek},
     title = {Integer partitions and convexity},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a5/}
}
TY  - JOUR
AU  - Bouroubi, Sadek
TI  - Integer partitions and convexity
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a5/
LA  - en
ID  - JIS_2007__10_6_a5
ER  - 
%0 Journal Article
%A Bouroubi, Sadek
%T Integer partitions and convexity
%J Journal of integer sequences
%D 2007
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a5/
%G en
%F JIS_2007__10_6_a5
Bouroubi, Sadek. Integer partitions and convexity. Journal of integer sequences, Tome 10 (2007) no. 6. http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a5/