Wild partitions and number theory
Journal of integer sequences, Tome 10 (2007) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce the notion of wild partition to describe in combinatorial language an important situation in the theory of $p$-adic fields. For $Q$ a power of $p$, we get a sequence of numbers $\lambda_{Q,n}$ counting the number of certain wild partitions of $n$. We give an explicit formula for the corresponding generating function $\Lambda_Q(x) = \sum \lambda_{Q,n} x^n$ and use it to show that $\lambda^{1/n}_{Q,n}$ tends to $Q^{1/(p-1)}$. We apply this asymptotic result to support a finiteness conjecture about number fields. Our finiteness conjecture contrasts sharply with known results for function fields, and our arguments explain this contrast.
Classification : 11S15, 11P72, 11R21
Keywords: wild, partition, p-adic, ramified, mass
@article{JIS_2007__10_6_a1,
     author = {Roberts, David P.},
     title = {Wild partitions and number theory},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a1/}
}
TY  - JOUR
AU  - Roberts, David P.
TI  - Wild partitions and number theory
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a1/
LA  - en
ID  - JIS_2007__10_6_a1
ER  - 
%0 Journal Article
%A Roberts, David P.
%T Wild partitions and number theory
%J Journal of integer sequences
%D 2007
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a1/
%G en
%F JIS_2007__10_6_a1
Roberts, David P. Wild partitions and number theory. Journal of integer sequences, Tome 10 (2007) no. 6. http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a1/