Polynomials generated by the Fibonacci sequence
Journal of integer sequences, Tome 10 (2007) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Fibonacci sequence's initial terms are $F_{0}=0$ and $F_{1}=1$, with $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. We define the polynomial sequence ${\bf p}$ by setting $p_{0}(x)=1$ and $p_{n}(x)=xp_{n-1}(x)+F_{n+1}$ for $n \geq 1$, with $p_{n}(x)=\sum_{k=0}^{n}F_{k+1}x^{n-k}$. We call $p_{n}(x)$ the Fibonacci-coefficient polynomial (FCP) of order $n$. The FCP sequence is distinct from the well-known Fibonacci polynomial sequence.
Keywords: Fibonacci, sequence, polynomial, zero, root, rouché's theorem, mahler measure
@article{JIS_2007__10_6_a0,
     author = {Garth, David and Mills, Donald and Mitchell, Patrick},
     title = {Polynomials generated by the {Fibonacci} sequence},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a0/}
}
TY  - JOUR
AU  - Garth, David
AU  - Mills, Donald
AU  - Mitchell, Patrick
TI  - Polynomials generated by the Fibonacci sequence
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a0/
LA  - en
ID  - JIS_2007__10_6_a0
ER  - 
%0 Journal Article
%A Garth, David
%A Mills, Donald
%A Mitchell, Patrick
%T Polynomials generated by the Fibonacci sequence
%J Journal of integer sequences
%D 2007
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a0/
%G en
%F JIS_2007__10_6_a0
Garth, David; Mills, Donald; Mitchell, Patrick. Polynomials generated by the Fibonacci sequence. Journal of integer sequences, Tome 10 (2007) no. 6. http://geodesic.mathdoc.fr/item/JIS_2007__10_6_a0/