On generating functions involving the square root of a quadratic polynomial
Journal of integer sequences, Tome 10 (2007) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Many familiar counting sequences, such as the Catalan, Motzkin, Schröder and Delannoy numbers, have a generating function that is algebraic of degree 2. For example, the GF for the central Delannoy numbers is $\frac{1}{\sqrt{1-6x+x^{2}}}$. Here we determine all generating functions of the form $\frac{1}{\sqrt{1+Ax+Bx^{2}}}$ that yield counting sequences and point out that they have a unified combinatorial interpretation in terms of colored lattice paths. We do likewise for the related forms $1-\sqrt{1+Ax+Bx^{2}}$ and $\frac{1+Ax-\sqrt{1+2Ax+Bx^{2}}}{2Cx^{2}}$.
Classification : 05A15
Keywords: generating function, colored lattice path
@article{JIS_2007__10_5_a7,
     author = {Callan, David},
     title = {On generating functions involving the square root of a quadratic polynomial},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a7/}
}
TY  - JOUR
AU  - Callan, David
TI  - On generating functions involving the square root of a quadratic polynomial
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a7/
LA  - en
ID  - JIS_2007__10_5_a7
ER  - 
%0 Journal Article
%A Callan, David
%T On generating functions involving the square root of a quadratic polynomial
%J Journal of integer sequences
%D 2007
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a7/
%G en
%F JIS_2007__10_5_a7
Callan, David. On generating functions involving the square root of a quadratic polynomial. Journal of integer sequences, Tome 10 (2007) no. 5. http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a7/