Enumeration of factorizable multi-dimensional permutations
Journal of integer sequences, Tome 10 (2007) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A $d$-dimensional permutation is a sequence of $d+1$ permutations with the leading element being the identity permutation. It can be viewed as an alignment structure across $d+1$ sequences, or visualized as the result of permuting $n$ hypercubes of $(d+1)$ dimensions. We study the hierarchical decomposition of $d$-dimensional permutations. We show that when $d >= 2$, the ratio between non-decomposable or simple $d$-permutations and all $d$-permutations approaches 1. We also prove that the growth rate of the number of $d$-permutations that can be factorized into $k$-ary branching trees approaches $(k/e)^{d}$ as $k$ grows.
Classification : 05A16, 05A05, 05A15
Keywords: asymptotic enumeration, permutation
@article{JIS_2007__10_5_a6,
     author = {Zhang, Hao and Gildea, Daniel},
     title = {Enumeration of factorizable multi-dimensional permutations},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a6/}
}
TY  - JOUR
AU  - Zhang, Hao
AU  - Gildea, Daniel
TI  - Enumeration of factorizable multi-dimensional permutations
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a6/
LA  - en
ID  - JIS_2007__10_5_a6
ER  - 
%0 Journal Article
%A Zhang, Hao
%A Gildea, Daniel
%T Enumeration of factorizable multi-dimensional permutations
%J Journal of integer sequences
%D 2007
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a6/
%G en
%F JIS_2007__10_5_a6
Zhang, Hao; Gildea, Daniel. Enumeration of factorizable multi-dimensional permutations. Journal of integer sequences, Tome 10 (2007) no. 5. http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a6/