Some generalized Fibonacci polynomials
Journal of integer sequences, Tome 10 (2007) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce polynomial generalizations of the $r$-Fibonacci, $r$-Gibonacci, and $r$-Lucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular $r$-mino arrangements.
Classification : 11B39, 05A15
Keywords: r-mino arrangement, polynomial generalization, Fibonacci numbers, Lucas numbers, gibonacci numbers
@article{JIS_2007__10_5_a3,
     author = {Shattuck, Mark A. and Wagner, Carl G.},
     title = {Some generalized {Fibonacci} polynomials},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a3/}
}
TY  - JOUR
AU  - Shattuck, Mark A.
AU  - Wagner, Carl G.
TI  - Some generalized Fibonacci polynomials
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a3/
LA  - en
ID  - JIS_2007__10_5_a3
ER  - 
%0 Journal Article
%A Shattuck, Mark A.
%A Wagner, Carl G.
%T Some generalized Fibonacci polynomials
%J Journal of integer sequences
%D 2007
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a3/
%G en
%F JIS_2007__10_5_a3
Shattuck, Mark A.; Wagner, Carl G. Some generalized Fibonacci polynomials. Journal of integer sequences, Tome 10 (2007) no. 5. http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a3/