Some remarks on the equation $F[n]=kF[m]$ in Fibonacci numbers
Journal of integer sequences, Tome 10 (2007) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let ${F_{n}}_{n= 1}^{\infty } = {1,1,2,3,\dots }$ be the sequence of Fibonacci numbers. In this paper we give some sufficient conditions on a natural number $k$ such that the equation $F_{n} = kF_{m}$ is solvable with respect to the unknowns $n$ and $m$. We also show that for $k > 1$ the equation $F_{n} = kF_{m}$ has at most one solution $(n,m)$.
Classification : 11B39, 11B50, 11D99
Keywords: Fibonacci numbers
@article{JIS_2007__10_5_a0,
     author = {Farrokhi D.G., M.},
     title = {Some remarks on the equation $F[n]=kF[m]$ in {Fibonacci} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a0/}
}
TY  - JOUR
AU  - Farrokhi D.G., M.
TI  - Some remarks on the equation $F[n]=kF[m]$ in Fibonacci numbers
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a0/
LA  - en
ID  - JIS_2007__10_5_a0
ER  - 
%0 Journal Article
%A Farrokhi D.G., M.
%T Some remarks on the equation $F[n]=kF[m]$ in Fibonacci numbers
%J Journal of integer sequences
%D 2007
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a0/
%G en
%F JIS_2007__10_5_a0
Farrokhi D.G., M. Some remarks on the equation $F[n]=kF[m]$ in Fibonacci numbers. Journal of integer sequences, Tome 10 (2007) no. 5. http://geodesic.mathdoc.fr/item/JIS_2007__10_5_a0/