Variations on a theme of Sierpiński
Journal of integer sequences, Tome 10 (2007) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using an idea of Erdős, Sierpiński proved that there exist infinitely many odd positive integers $k$ such that $k\bullet 2^{n}+1$ is composite for all positive integers $n$. In this paper we give a brief discussion of Sierpiński's theorem and some variations that have been examined, including the work of Riesel, Brier, Chen, and most recently, Filaseta, Finch and Kozek. The majority of the paper is devoted to the presentation of some new results concerning our own variations of Sierpiński's original theorem.
Classification : 11B25, 11B07, 11B99
Keywords: sierpiński number, arithmetic progression, primitive divisor
@article{JIS_2007__10_4_a0,
     author = {Jones, Lenny},
     title = {Variations on a theme of {Sierpi\'nski}},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_4_a0/}
}
TY  - JOUR
AU  - Jones, Lenny
TI  - Variations on a theme of Sierpiński
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_4_a0/
LA  - en
ID  - JIS_2007__10_4_a0
ER  - 
%0 Journal Article
%A Jones, Lenny
%T Variations on a theme of Sierpiński
%J Journal of integer sequences
%D 2007
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_4_a0/
%G en
%F JIS_2007__10_4_a0
Jones, Lenny. Variations on a theme of Sierpiński. Journal of integer sequences, Tome 10 (2007) no. 4. http://geodesic.mathdoc.fr/item/JIS_2007__10_4_a0/