Polynomial points
Journal of integer sequences, Tome 10 (2007) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We determine the infinite sequences $ (a_k)$ of integers that can be generated by polynomials with integral coefficients, in the sense that for each finite initial segment of length $ n$ there is an integral polynomial $ f_n(x)$ of degree $ $ such that $ a_k=f_n(k)$ for $ k=0,1,\dots, n-1$.
Classification : 20K21, 20K25, 20K30, 13F20, 15A36
Keywords: mixed Abelian groups, Lagrange interpolation polynomials, integral polynomials, integral root basis, baer-specker group, Pascal's matrix
@article{JIS_2007__10_3_a3,
     author = {Cornelius, E.F. jun. and Schultz, Phill},
     title = {Polynomial points},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_3_a3/}
}
TY  - JOUR
AU  - Cornelius, E.F. jun.
AU  - Schultz, Phill
TI  - Polynomial points
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_3_a3/
LA  - en
ID  - JIS_2007__10_3_a3
ER  - 
%0 Journal Article
%A Cornelius, E.F. jun.
%A Schultz, Phill
%T Polynomial points
%J Journal of integer sequences
%D 2007
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_3_a3/
%G en
%F JIS_2007__10_3_a3
Cornelius, E.F. jun.; Schultz, Phill. Polynomial points. Journal of integer sequences, Tome 10 (2007) no. 3. http://geodesic.mathdoc.fr/item/JIS_2007__10_3_a3/