On sums involving binomial coefficients
Journal of integer sequences, Tome 10 (2007) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give closed forms for the series $\sum_{m=1}^{\infty}\frac{(2x)^{2m+2k}}{m^{2}(m+k) {2m \choose m}}$ and $\sum_{m=1}^{\infty}\frac{(2x)^{2m}(-1)^{m+k}}{m^{2}(m+k) {2m \choose m}}$ for integers $k \geq 0$.
Classification : 11B65
Keywords: binomial coefficients, integral
@article{JIS_2007__10_2_a7,
     author = {Amghibech, S.},
     title = {On sums involving binomial coefficients},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a7/}
}
TY  - JOUR
AU  - Amghibech, S.
TI  - On sums involving binomial coefficients
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a7/
LA  - en
ID  - JIS_2007__10_2_a7
ER  - 
%0 Journal Article
%A Amghibech, S.
%T On sums involving binomial coefficients
%J Journal of integer sequences
%D 2007
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a7/
%G en
%F JIS_2007__10_2_a7
Amghibech, S. On sums involving binomial coefficients. Journal of integer sequences, Tome 10 (2007) no. 2. http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a7/