On the average growth of random Fibonacci sequences
Journal of integer sequences, Tome 10 (2007) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that the average value of the $n$-th term of a sequence defined by the recurrence relation $g_{n} = |g_{n-1} \pm g_{n-2}$|, where the $\pm $ sign is randomly chosen, increases exponentially, with a growth rate given by an explicit algebraic number of degree 3. The proof involves a binary tree such that the number of nodes in each row is a Fibonacci number.
Classification : 11A55, 15A52, 05C05, 15A35
Keywords: binary tree, random Fibonacci tree, linear recurring sequence, random Fibonacci sequence, continued fraction
@article{JIS_2007__10_2_a0,
     author = {Rittaud, Beno{\^\i}t},
     title = {On the average growth of random {Fibonacci} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a0/}
}
TY  - JOUR
AU  - Rittaud, Benoît
TI  - On the average growth of random Fibonacci sequences
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a0/
LA  - en
ID  - JIS_2007__10_2_a0
ER  - 
%0 Journal Article
%A Rittaud, Benoît
%T On the average growth of random Fibonacci sequences
%J Journal of integer sequences
%D 2007
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a0/
%G en
%F JIS_2007__10_2_a0
Rittaud, Benoît. On the average growth of random Fibonacci sequences. Journal of integer sequences, Tome 10 (2007) no. 2. http://geodesic.mathdoc.fr/item/JIS_2007__10_2_a0/