Sequences of generalized happy numbers with small bases
Journal of integer sequences, Tome 10 (2007) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For bases $b \le 5$ and exponents $e \ge 2$, there exist arbitrarily long finite sequences of $d$-consecutive $e$-power $b$-happy numbers for a specific $d = d(e,b)$, which is shown to be minimal possible.
Keywords: happy numbers, consecutive, base
@article{JIS_2007__10_1_a5,
     author = {Grundman, H.G. and Teeple, E.A.},
     title = {Sequences of generalized happy numbers with small bases},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a5/}
}
TY  - JOUR
AU  - Grundman, H.G.
AU  - Teeple, E.A.
TI  - Sequences of generalized happy numbers with small bases
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a5/
LA  - en
ID  - JIS_2007__10_1_a5
ER  - 
%0 Journal Article
%A Grundman, H.G.
%A Teeple, E.A.
%T Sequences of generalized happy numbers with small bases
%J Journal of integer sequences
%D 2007
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a5/
%G en
%F JIS_2007__10_1_a5
Grundman, H.G.; Teeple, E.A. Sequences of generalized happy numbers with small bases. Journal of integer sequences, Tome 10 (2007) no. 1. http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a5/