Deformations of the Taylor formula
Journal of integer sequences, Tome 10 (2007) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a sequence $ x=\{x_n, \ n \in \mathbb{N}\}$ with integer values, or more generally with values in a ring of polynomials with integer coefficients, one can form the generalized binomial coefficients associated with $ x, {\binom nm}_x=\prod_{l=1}^{m} \frac{x_{n-l+1}}{x_l}$. In this note we introduce several sequences that possess the following remarkable feature: the fractions $ \binom nm_x$ are in fact polynomials with integer coefficients.
Classification : 05A10, 05A30, 11B39, 11B65
Keywords: generalized binomial coefficients
@article{JIS_2007__10_1_a2,
     author = {Ferrand, Emmanuel},
     title = {Deformations of the {Taylor} formula},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a2/}
}
TY  - JOUR
AU  - Ferrand, Emmanuel
TI  - Deformations of the Taylor formula
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a2/
LA  - en
ID  - JIS_2007__10_1_a2
ER  - 
%0 Journal Article
%A Ferrand, Emmanuel
%T Deformations of the Taylor formula
%J Journal of integer sequences
%D 2007
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a2/
%G en
%F JIS_2007__10_1_a2
Ferrand, Emmanuel. Deformations of the Taylor formula. Journal of integer sequences, Tome 10 (2007) no. 1. http://geodesic.mathdoc.fr/item/JIS_2007__10_1_a2/