Congruences for a class of alternating lacunary sums of binomial coefficients
Journal of integer sequences, Tome 10 (2007) no. 10.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An 1876 theorem of Hermite, later extended by Bachmann, gives congruences modulo primes for lacunary sums over the rows of Pascal's triangle. This paper gives an analogous result for alternating sums over a certain class of rows. The proof makes use of properties of certain linear recurrences.
Classification : 11A07, 05A19, 11B65
Keywords: binomial sums, binomial coefficients, congruences
@article{JIS_2007__10_10_a1,
     author = {Dilcher, Karl},
     title = {Congruences for a class of alternating lacunary sums of binomial coefficients},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2007__10_10_a1/}
}
TY  - JOUR
AU  - Dilcher, Karl
TI  - Congruences for a class of alternating lacunary sums of binomial coefficients
JO  - Journal of integer sequences
PY  - 2007
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2007__10_10_a1/
LA  - en
ID  - JIS_2007__10_10_a1
ER  - 
%0 Journal Article
%A Dilcher, Karl
%T Congruences for a class of alternating lacunary sums of binomial coefficients
%J Journal of integer sequences
%D 2007
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2007__10_10_a1/
%G en
%F JIS_2007__10_10_a1
Dilcher, Karl. Congruences for a class of alternating lacunary sums of binomial coefficients. Journal of integer sequences, Tome 10 (2007) no. 10. http://geodesic.mathdoc.fr/item/JIS_2007__10_10_a1/