Periodicity and parity theorems for a statistic on $r$-mino arrangements
Journal of integer sequences, Tome 9 (2006) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study polynomial generalizations of the $r$-Fibonacci and $r$-Lucas sequences which arise in connection with a certain statistic on linear and circular $r$-mino arrangements, respectively. By considering special values of these polynomials, we derive periodicity and parity theorems for this statistic on the respective structures.
Classification : 11B39, 05A15
Keywords: r-mino arrangement, polynomial generalization, Fibonacci numbers, Lucas numbers
@article{JIS_2006__9_3_a7,
     author = {Shattuck, Mark A. and Wagner, Carl G.},
     title = {Periodicity and parity theorems for a statistic on $r$-mino arrangements},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a7/}
}
TY  - JOUR
AU  - Shattuck, Mark A.
AU  - Wagner, Carl G.
TI  - Periodicity and parity theorems for a statistic on $r$-mino arrangements
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a7/
LA  - en
ID  - JIS_2006__9_3_a7
ER  - 
%0 Journal Article
%A Shattuck, Mark A.
%A Wagner, Carl G.
%T Periodicity and parity theorems for a statistic on $r$-mino arrangements
%J Journal of integer sequences
%D 2006
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a7/
%G en
%F JIS_2006__9_3_a7
Shattuck, Mark A.; Wagner, Carl G. Periodicity and parity theorems for a statistic on $r$-mino arrangements. Journal of integer sequences, Tome 9 (2006) no. 3. http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a7/