All elite primes up to 250 billion
Journal of integer sequences, Tome 9 (2006) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A prime number $p$ is called $elite$ if only finitely many Fermat numbers $2 ^{ 2 $^n $ +1$ are quadratic residues of $p$. Previously only the interval up to $10^{9}$ was systematically searched for elite primes and 16 such primes were found. We extended this research up to 2.5 . $10^{11}$ and found five further elites, among which 1,151,139,841 is the smallest and 171,727,482,881 the largest.
Classification : 11A15, 11A41
Keywords: elite primes, Fermat numbers
@article{JIS_2006__9_3_a6,
     author = {Chaumont, Alain and M\"uller, Tom},
     title = {All elite primes up to 250 billion},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a6/}
}
TY  - JOUR
AU  - Chaumont, Alain
AU  - Müller, Tom
TI  - All elite primes up to 250 billion
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a6/
LA  - en
ID  - JIS_2006__9_3_a6
ER  - 
%0 Journal Article
%A Chaumont, Alain
%A Müller, Tom
%T All elite primes up to 250 billion
%J Journal of integer sequences
%D 2006
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a6/
%G en
%F JIS_2006__9_3_a6
Chaumont, Alain; Müller, Tom. All elite primes up to 250 billion. Journal of integer sequences, Tome 9 (2006) no. 3. http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a6/