On the Farey fractions with denominators in arithmetic progression
Journal of integer sequences, Tome 9 (2006) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $ {\mathfrak{F}^{Q}}$ be the set of Farey fractions of order $ Q$. Given the integers $ \mathfrak{d}\ge 2$ and $ 0\le \mathfrak{c}\le \mathfrak{d}-1$, let $ {\mathfrak{F}^{Q}}(\mathfrak{c},\mathfrak{d})$ be the subset of $ {\mathfrak{F}^{Q}}$ of those fractions whose denominators are $ \equiv \mathfrak{c}$ (mod $ \mathfrak{d})$, arranged in ascending order. The problem we address here is to show that as $ Q\to\infty$, there exists a limit probability measuring the distribution of $ s$-tuples of consecutive denominators of fractions in $ {\mathfrak{F}^{Q}}(\mathfrak{c},\mathfrak{d})$. This shows that the clusters of points $ (q_0/Q,q_1/Q,\dots,q_s/Q)\in[0,1]^{s+1}$, where $ q_0,q_1,\dots,q_s$ are consecutive denominators of members of $ {\mathfrak{F}^{Q}}$ produce a limit set, denoted by $ \mathcal{D}(\mathfrak{c},\mathfrak{d})$. The shape and the structure of this set are presented in several particular cases.
Classification : 11B57
Keywords: Farey fractions, arithmetic progressions, congruence constraints
@article{JIS_2006__9_3_a2,
     author = {Cobeli, C. and Zaharescu, A.},
     title = {On the {Farey} fractions with denominators in arithmetic progression},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a2/}
}
TY  - JOUR
AU  - Cobeli, C.
AU  - Zaharescu, A.
TI  - On the Farey fractions with denominators in arithmetic progression
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a2/
LA  - en
ID  - JIS_2006__9_3_a2
ER  - 
%0 Journal Article
%A Cobeli, C.
%A Zaharescu, A.
%T On the Farey fractions with denominators in arithmetic progression
%J Journal of integer sequences
%D 2006
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a2/
%G en
%F JIS_2006__9_3_a2
Cobeli, C.; Zaharescu, A. On the Farey fractions with denominators in arithmetic progression. Journal of integer sequences, Tome 9 (2006) no. 3. http://geodesic.mathdoc.fr/item/JIS_2006__9_3_a2/