On integer-sequence-based constructions of generalized Pascal triangles
Journal of integer sequences, Tome 9 (2006) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce an integer sequence based construction of invertible centrally symmetric number triangles, which generalize Pascal's triangle. We characterize the row sums and central coefficients of these triangles, and examine other properties. Links to the Narayana numbers are explored. Use is made of the Riordan group to elucidate properties of a special one-parameter subfamily. An alternative exponential approach to constructing generalized Pascal triangles is briefly explored.
Classification : 11B83, 05A19, 11B37, 11B65
Keywords: Pascal's triangle, narayana numbers, Catalan numbers, schr$\ddot $oder numbers, de- lannoy numbers, Fibonacci numbers, jacobsthal numbers
@article{JIS_2006__9_2_a5,
     author = {Barry, Paul},
     title = {On integer-sequence-based constructions of generalized {Pascal} triangles},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a5/}
}
TY  - JOUR
AU  - Barry, Paul
TI  - On integer-sequence-based constructions of generalized Pascal triangles
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a5/
LA  - en
ID  - JIS_2006__9_2_a5
ER  - 
%0 Journal Article
%A Barry, Paul
%T On integer-sequence-based constructions of generalized Pascal triangles
%J Journal of integer sequences
%D 2006
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a5/
%G en
%F JIS_2006__9_2_a5
Barry, Paul. On integer-sequence-based constructions of generalized Pascal triangles. Journal of integer sequences, Tome 9 (2006) no. 2. http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a5/