Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}^\infty_{k=1}$
Journal of integer sequences, Tome 9 (2006) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $N_{a,b}(x)$ count the number of primes $p\le x$ with $p$ dividing $a^k+b^k$ for some $k\ge 1$. It is known that $N_{a,b}(x)\sim c(a,b)x/\log x$ for some rational number $c(a,b)$ that depends in a rather intricate way on $a$ and $b$. A simple heuristic formula for $N_{a,b}(x)$ is proposed and it is proved that it is asymptotically exact, i.e., has the same asymptotic behavior as $N_{a,b}(x)$. Connections with Ramanujan sums and character sums are discussed.
Classification : 11N37, 11N69, 11R45
Keywords: primitive root, chebotarev density theorem, Dirichlet density
@article{JIS_2006__9_2_a0,
     author = {Moree, Pieter},
     title = {Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}^\infty_{k=1}$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a0/}
}
TY  - JOUR
AU  - Moree, Pieter
TI  - Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}^\infty_{k=1}$
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a0/
LA  - en
ID  - JIS_2006__9_2_a0
ER  - 
%0 Journal Article
%A Moree, Pieter
%T Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}^\infty_{k=1}$
%J Journal of integer sequences
%D 2006
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a0/
%G en
%F JIS_2006__9_2_a0
Moree, Pieter. Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}^\infty_{k=1}$. Journal of integer sequences, Tome 9 (2006) no. 2. http://geodesic.mathdoc.fr/item/JIS_2006__9_2_a0/