14-term arithmetic progressions on quartic elliptic curves
Journal of integer sequences, Tome 9 (2006) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $P_4(x)$ be a rational quartic polynomial which is not the square of a quadratic. Both Campbell and Ulas considered the problem of finding an rational arithmetic progression $x_1,x_2,\ldots,x_n$, with $P_4(x_i)$ a rational square for $1 \le i \le n$. They found examples with $n=10$ and $n=12$. By simplifying Ulas' approach, we can derive more general parametric solutions for $n=10$, which give a large number of examples with $n=12$ and a few with $n=14$.
Classification : 11G05, 11B25
Keywords: arithmetic progression, quartic, elliptic curve
@article{JIS_2006__9_1_a6,
     author = {MacLeod, Allan J.},
     title = {14-term arithmetic progressions on quartic elliptic curves},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a6/}
}
TY  - JOUR
AU  - MacLeod, Allan J.
TI  - 14-term arithmetic progressions on quartic elliptic curves
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a6/
LA  - en
ID  - JIS_2006__9_1_a6
ER  - 
%0 Journal Article
%A MacLeod, Allan J.
%T 14-term arithmetic progressions on quartic elliptic curves
%J Journal of integer sequences
%D 2006
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a6/
%G en
%F JIS_2006__9_1_a6
MacLeod, Allan J. 14-term arithmetic progressions on quartic elliptic curves. Journal of integer sequences, Tome 9 (2006) no. 1. http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a6/