A relation between restricted and unrestricted weighted Motzkin paths
Journal of integer sequences, Tome 9 (2006) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider those lattice paths that use the steps "up", "level", and "down" with assigned weights $w,b,c$. In probability theory, the total weight is 1. In combinatorics, we replace weight by the number of colors. Here we give a combinatorial proof of a relation between restricted and unrestricted weighted Motzkin paths.
Classification : 05A15, 05A19
Keywords: Motzkin paths, combinatorial identity
@article{JIS_2006__9_1_a0,
     author = {Woan, Wen-jin},
     title = {A relation between restricted and unrestricted weighted {Motzkin} paths},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a0/}
}
TY  - JOUR
AU  - Woan, Wen-jin
TI  - A relation between restricted and unrestricted weighted Motzkin paths
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a0/
LA  - en
ID  - JIS_2006__9_1_a0
ER  - 
%0 Journal Article
%A Woan, Wen-jin
%T A relation between restricted and unrestricted weighted Motzkin paths
%J Journal of integer sequences
%D 2006
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a0/
%G en
%F JIS_2006__9_1_a0
Woan, Wen-jin. A relation between restricted and unrestricted weighted Motzkin paths. Journal of integer sequences, Tome 9 (2006) no. 1. http://geodesic.mathdoc.fr/item/JIS_2006__9_1_a0/