On a sequence arising in algebraic geometry
Journal of integer sequences, Tome 8 (2005) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We derive recurrence relations for the sequence of Maclaurin coefficients of the function $\chi=\chi(t)$ satisfying $(1+\chi) \ln (1+\chi)=2 \chi-t$.
Classification : 11Y55
Keywords: cohomology rings of the moduli space, exponential generating functions, recurrences
@article{JIS_2005__8_4_a1,
     author = {Goulden, I.P. and Litsyn, S. and Shevelev, V.},
     title = {On a sequence arising in algebraic geometry},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a1/}
}
TY  - JOUR
AU  - Goulden, I.P.
AU  - Litsyn, S.
AU  - Shevelev, V.
TI  - On a sequence arising in algebraic geometry
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a1/
LA  - en
ID  - JIS_2005__8_4_a1
ER  - 
%0 Journal Article
%A Goulden, I.P.
%A Litsyn, S.
%A Shevelev, V.
%T On a sequence arising in algebraic geometry
%J Journal of integer sequences
%D 2005
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a1/
%G en
%F JIS_2005__8_4_a1
Goulden, I.P.; Litsyn, S.; Shevelev, V. On a sequence arising in algebraic geometry. Journal of integer sequences, Tome 8 (2005) no. 4. http://geodesic.mathdoc.fr/item/JIS_2005__8_4_a1/