On families of nonlinear recurrences related to digits
Journal of integer sequences, Tome 8 (2005) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider the sequence of positive integers $(u_n)_{n\geq 1}$ defined by $u_1=1$ and $u_{n+1}=\lfloor\sqrt{2}\left(u_n+\frac{1}{2}\right) \rfloor$. Graham and Pollak discovered the unexpected fact that $u_{2n+1}-2u_{2n-1}$ is just the $n$-th digit in the binary expansion of $\sqrt{2}$. Fix $w\in {\mathbb{R}}_{>0}$. In this note, we first give two infinite families of similar nonlinear recurrences such that $u_{2n+1}-2u_{2n-1}$ indicates the $n$-th binary digit of $w$. Moreover, for all integral $g\geq 2$, we establish a recurrence such that $u_{2n+1}-gu_{2n-1}$ denotes the $n$-th digit of $w$ in the $g$-ary digital expansion.
Classification : 11B37, 11A67
Keywords: graham-pollak sequence, nonlinear recurrence, digits
@article{JIS_2005__8_3_a7,
     author = {Stoll, Th.},
     title = {On families of nonlinear recurrences related to digits},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a7/}
}
TY  - JOUR
AU  - Stoll, Th.
TI  - On families of nonlinear recurrences related to digits
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a7/
LA  - en
ID  - JIS_2005__8_3_a7
ER  - 
%0 Journal Article
%A Stoll, Th.
%T On families of nonlinear recurrences related to digits
%J Journal of integer sequences
%D 2005
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a7/
%G en
%F JIS_2005__8_3_a7
Stoll, Th. On families of nonlinear recurrences related to digits. Journal of integer sequences, Tome 8 (2005) no. 3. http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a7/