A note on arithmetic progressions on quartic elliptic curves
Journal of integer sequences, Tome 8 (2005) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: G. Campbell described a technique for producing infinite families of quartic elliptic curves containing a length-9 arithmetic progression. He also gave an example of a quartic elliptic curve containing a length-12 arithmetic progression. In this note we give a construction of an infinite family of quartics on which there is an arithmetic progression of length 10. Then we show that there exists an infinite family of quartics containing a sequence of length 12. Full version: pdf, dvi, ps, latex
Classification : 11G05, 11B25
Keywords: elliptic curves, arithmetic progression
@article{JIS_2005__8_3_a6,
     author = {Ulas, Maciej},
     title = {A note on arithmetic progressions on quartic elliptic curves},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a6/}
}
TY  - JOUR
AU  - Ulas, Maciej
TI  - A note on arithmetic progressions on quartic elliptic curves
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a6/
LA  - en
ID  - JIS_2005__8_3_a6
ER  - 
%0 Journal Article
%A Ulas, Maciej
%T A note on arithmetic progressions on quartic elliptic curves
%J Journal of integer sequences
%D 2005
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a6/
%G en
%F JIS_2005__8_3_a6
Ulas, Maciej. A note on arithmetic progressions on quartic elliptic curves. Journal of integer sequences, Tome 8 (2005) no. 3. http://geodesic.mathdoc.fr/item/JIS_2005__8_3_a6/