A recursive relation for weighted Motzkin sequences
Journal of integer sequences, Tome 8 (2005) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider those lattice paths that use the steps $Up, Level$, and $Down$ with assigned weights $w, u$, and $v$. In probability theory, the total weight is 1. In combinatorics, we regard weight as the number of colors and normalize by setting $w=1$. The lattice paths generate Motzkin sequences. Here we give a combinatorial proof of a three-term recursion for a weighted Motzkin sequence and we find the radius of convergence.
Classification : 05A15, 05A19
Keywords: Motzkin paths, combinatorial identity
@article{JIS_2005__8_1_a5,
     author = {Woan, Wen-jin},
     title = {A recursive relation for weighted {Motzkin} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a5/}
}
TY  - JOUR
AU  - Woan, Wen-jin
TI  - A recursive relation for weighted Motzkin sequences
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a5/
LA  - en
ID  - JIS_2005__8_1_a5
ER  - 
%0 Journal Article
%A Woan, Wen-jin
%T A recursive relation for weighted Motzkin sequences
%J Journal of integer sequences
%D 2005
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a5/
%G en
%F JIS_2005__8_1_a5
Woan, Wen-jin. A recursive relation for weighted Motzkin sequences. Journal of integer sequences, Tome 8 (2005) no. 1. http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a5/