Concatenations with binary recurrent sequences
Journal of integer sequences, Tome 8 (2005) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given positive integers $A_1,\ldots,A_t$ and $b\ge 2$, we write $\overline{A_1\cdots A_t}_{(b)}$ for the integer whose base-$b$ representation is the concatenation of the base-$b$ representations of $A_1,\ldots,A_t$. In this paper, we prove that if $(u_n)_{n\ge 0}$ is a binary recurrent sequence of integers satisfying some mild hypotheses, then for every fixed integer $t\ge 1$, there are at most finitely many nonnegative integers $n_1,\ldots,n_t$ such that ${\overline{\vert u_{n_1}\vert\cdots \vert u_{n_t}\vert}}_{\,(b)}$ is a member of the sequence $(\vert u_n\vert)_{n\ge 0}$. In particular, we compute all such instances in the special case that $b=10, t=2$, and $u_n=F_n$ is the sequence of Fibonacci numbers.
Classification : 11B37, 11B39, 11J86
Keywords: binary recurrent sequences, Fibonacci numbers, digits
@article{JIS_2005__8_1_a2,
     author = {Banks, William D. and Luca, Florian},
     title = {Concatenations with binary recurrent sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a2/}
}
TY  - JOUR
AU  - Banks, William D.
AU  - Luca, Florian
TI  - Concatenations with binary recurrent sequences
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a2/
LA  - en
ID  - JIS_2005__8_1_a2
ER  - 
%0 Journal Article
%A Banks, William D.
%A Luca, Florian
%T Concatenations with binary recurrent sequences
%J Journal of integer sequences
%D 2005
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a2/
%G en
%F JIS_2005__8_1_a2
Banks, William D.; Luca, Florian. Concatenations with binary recurrent sequences. Journal of integer sequences, Tome 8 (2005) no. 1. http://geodesic.mathdoc.fr/item/JIS_2005__8_1_a2/