Some results on summability of random variables
Journal of integer sequences, Tome 7 (2004) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A convolution summability method introduced as an extension of the random-walk method generalizes the classical Euler, Borel, Taylor and Meyer-König type matrix methods. This corresponds to the distribution of sums of independent and identically distributed integer-valued random variables. In this paper, we discuss the strong regularity concept of Lorentz applied to the convolution method of summability. Later, we obtain the summability functions and absolute summability functions of this method.
Classification : 40A05, 40C05, 42B08, 43A99
Keywords: absolute summability functions, almost convergence, convolution summability method, random-walk method, regularity, summability functions, strong regularity
@article{JIS_2004__7_3_a0,
     author = {Goonatilake, Rohitha},
     title = {Some results on summability of random variables},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_3_a0/}
}
TY  - JOUR
AU  - Goonatilake, Rohitha
TI  - Some results on summability of random variables
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_3_a0/
LA  - en
ID  - JIS_2004__7_3_a0
ER  - 
%0 Journal Article
%A Goonatilake, Rohitha
%T Some results on summability of random variables
%J Journal of integer sequences
%D 2004
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_3_a0/
%G en
%F JIS_2004__7_3_a0
Goonatilake, Rohitha. Some results on summability of random variables. Journal of integer sequences, Tome 7 (2004) no. 3. http://geodesic.mathdoc.fr/item/JIS_2004__7_3_a0/