The number of ternary words avoiding abelian cubes grows exponentially
Journal of integer sequences, Tome 7 (2004) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the number of ternary words of length $n$ avoiding abelian cubes grows faster than $r^n$, where $r = 2$^(1/24).
@article{JIS_2004__7_2_a7,
     author = {Aberkane, Ali and Currie, James D. and Rampersad, Narad},
     title = {The number of ternary words avoiding abelian cubes grows exponentially},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_2_a7/}
}
TY  - JOUR
AU  - Aberkane, Ali
AU  - Currie, James D.
AU  - Rampersad, Narad
TI  - The number of ternary words avoiding abelian cubes grows exponentially
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_2_a7/
LA  - en
ID  - JIS_2004__7_2_a7
ER  - 
%0 Journal Article
%A Aberkane, Ali
%A Currie, James D.
%A Rampersad, Narad
%T The number of ternary words avoiding abelian cubes grows exponentially
%J Journal of integer sequences
%D 2004
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_2_a7/
%G en
%F JIS_2004__7_2_a7
Aberkane, Ali; Currie, James D.; Rampersad, Narad. The number of ternary words avoiding abelian cubes grows exponentially. Journal of integer sequences, Tome 7 (2004) no. 2. http://geodesic.mathdoc.fr/item/JIS_2004__7_2_a7/